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Multifractal phase transitions in the non-Debye relaxation processes

Alexander Leyderman* and Shi-Xian Qu†

Department of Physics, University of Puerto Rico, Mayagu¨ez, Puerto Rico 00680
~Received 11 April 2000!

The multifractal measures of the relaxation-time distributions are analytically obtained for some typical
non-Debye dielectric relaxation processes. The characteristics of the corresponding multifractal thermodynam-
ics are discussed. It is shown that the probability of the relaxation times near the poles of their distribution
function is fractal scaling. The corresponding Lipschitz-Ho¨ld singular exponent is, or can be, determined by the
so-called shape parameters in the empirical dielectric relaxation formulas. The relationship to some analytical
proofs of the empirical dielectric formulas based upon the fractal models is also analyzed. Some generalized
multifractal phase transitions with interesting features are reported in this paper. The recent experiment results
on the molten-crystal transition in organic glass systems are also discussed to support our conclusions.

PACS number~s!: 05.40.2a, 77.22.Gm, 47.53.1n, 64.70.Pf
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I. INTRODUCTION

Relaxation processes, deviating from exponential beh
ior in time domain or from the classical Debye form in fr
quency domain, occur in many physical systems such as
electrics, supercooled liquids, viscoelastic solids, liqu
crystals, polymer melts and solutions, and porous me
They are usually described by sophisticated mathema
functions, for instance the Cole-Cole formula, the Davids
Cole formula, the Havriliak-Negami function, and pow
laws @1–3#. The deep understanding of these dielectric p
cesses and the first principle proof of these empirical re
ation functions are the important topics. Recently, the fra
interpretation of dielectric relaxation phenomena has beco
a very active research field@4–10#. Nigmatullin and Ryabov
@4–6# set up some general relaxation equations based on
fractional order calculus in time structure, and carried out
analytical derivations of the Cole-Cole and the Davidso
Cole dielectric relaxation formulas. Feldmanet al. @7# ad-
vanced a model to describe the cooperative relaxation in
croemulsions near the percolation threshold, in which
excitation transferring via relaxation channels in a frac
cluster of droplets is supposed. Based upon the well-kno
Zener model, Metzler and his collaborators@8# developed a
fractional-order differential equation with respect to time f
both strain and stress relaxations, and also obtained the
eral relaxation-time distribution. A differential equation fo
non-Debye relaxation and diffusion was built in fract
space-time by Kobelev and his co-workers@9#. The anoma-
lous relaxations were studied by Gonza´lez and Araujo@10#
through the random-walk model in disordered structures c
sisting of regular and fractal lattices.

In Ref. @4#, a self-similar relaxation process is assum
for the Davidson-Cole dielectric relaxation process. The
thors consider the system in which the relaxation on the m
roscopic level may be defined as the relaxation of the en
mous elementary components on the microlevel. Th
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believe that the equations describing relaxation of the sys
on the macrolevel will coincide with the equations descr
ing the relaxation of individual electric dipoles on the m
crolevel. Then a model with the relaxation times distributi
over a fractal set is built. Through the analytic derivation
the fractional-order differential equation for the relaxati
function, they obtained the Davidson-Cole formula for t
complex susceptibility. They related the exponent in the f
mula to the fractal dimension of the time structure ov
which the relaxation time distributes. Their approach p
vides a reasonable interpretation of the Davidson-Cole
mula. In Ref.@11#, Gomi and Yonezawa defined a relaxatio
function by the characteristic function of the fractal rando
walk. The Fourier-Laplace transformation of this functio
yields the Cole-Cole formula, in which the breadth expon
is related to the exponent in the scaling of the probabi
distribution of fractal random jump events.

For the non-Debye relaxation, one often expects the
tribution of relaxation times@1#. Analysis of the distribution
properties will also shed light on the understanding of
nature of relaxation processes. The multifractal@12# analysis
of the distribution property of physics quantities in co
densed matters has recently attracted much interest am
researchers. The discovery of phase transitions in multifr
tal analysis is another new development in fractal theory
its applications, and there are still many open questions
general, a phase transition results from the nonanalytic p
erty of the characteristic thermodynamic functions, and m
be accompanied by abrupt changes in the properties of
system. The investigation of phase transitions will provid
way to get a complete knowledge of the system. In analyz
the measure property of the relaxation-time distribution
Davidson-Cole relaxation, we got an analytical descript
of the corresponding multifractal thermodynamics and fou
a generalized multifractal phase transition@13#. It is the first
evidence of multifractal phase transition in the relaxati
processes. In this paper, we will extend the multifrac
analysis to the Cole-Cole and the Havriliak-Negami rela
ation patterns. The phase transitions in these two proce
and the relationship among the phase transitions in diffe
relaxation patterns will be discussed. Our recent experim
results on the molten-crystal transition in organic gla
o-
3293 ©2000 The American Physical Society
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systems are also discussed to support the conclusion
this work.

II. MULTIFRACTAL ANSATZ

The multifractal analysis is based on the standard b
counting procedure, dividing the system intoNd boxes of
linear sized and determining the probability of some phys
cal property in thei th box,

Pi~d!5E
box i

r dV, ~1!

as a suitable measure, wherer is the probability density
~distribution function!. Theq-order probability moment, i.e.
the partition function, is defined by

Z~q!5(
i

Pi~d!q. ~2!

If it is proportional to some power of the box size asd→0,
e.g.,

lim
d→0

Z~q!;d (q21)Dq, ~3!

then the multifractal behavior or a multifractal set may
derived.Dq is the so-called generalized dimension, which
defined as follows:

Dq5 lim
d→0

ln Z~q!

~q21!ln d
. ~4!

The behavior of this multifractal set can be completely d
scribed by an infinite number of generalized dimensio
Each generalized dimension has its own meaning, for
ample,D0 is the dimension of the support of the measu
onto which the elements of the multifractal set distribute,D1
is the information dimension which determines the scaling
the information with respect to box size, and the correlat
dimensionD2 reflects the scaling of density-density corre
tion function.Dq is often related to the so-called mass exp
nent@12# ~in this paper, the mass exponent is denoted byJ),

J~q!5~q21!Dq . ~5!

While the discussion of the generalized dimensionDq is
quite illustrative, the abstract analysis of multifractals is
ten concerned with the singularity strength of the frac
given by the Lipschitz-Ho¨ld exponenta and the correspond
ing singularity spectrumf (a). In the i th box, the singularity
strengtha is defined by

Pi~d!;da i. ~6!

The number of subsetsN(a) in which this strength is ob-
served satisfies the following rule:

N~a!;d2 f (a), ~7!
of

-

-
.

x-

f
n

-

-
l,

wheref (a) is the Hausdorff dimension of these subsets. O
can easily get the relationship betweenJ(q) and f (a). Ac-
cording to Eqs.~6! and ~7!, the partition function could be
rewritten as

Z~d!5(
i

Pi~d!q5E da r~a!dqa2 f (a). ~8!

The saddle-point approximation to the integrand in Eq.~8!
yields

Z~d!;dqa(q)2 f (a). ~9!

Combining the definitions~4! and ~5!, one gets

J~q!5qa~q!2 f ~a!, q5
d f~a!

da
. ~10!

This equation is just the Legendre transformation, whereq is
analogous to reciprocal temperature in ordinary thermo
namics. One may immediately obtain the inverse Legen
transformations,

f ~a!5a~q!q2J~q!, a5
dJ~q!

dq
. ~11!

In the multifractal thermodynamics, one also addressesJ(q)
as ‘‘free energy’’ andf (a) as ‘‘entropy.’’ Now, two sets of
characteristic functionsJ(q) and f (a) have been set up to
describe the multifractal behavior.

III. RELAXATION-TIME DISTRIBUTIONS AND THE
MULTIFRACTAL PARTITION FUNCTIONS

In Debye’s dielectric relaxation theory, the dipoles in d
electric media relax with a single relaxation timet0, and the
frequency dependence of the complex permittivity reads

e* ~v!5e`1
De

11 ivt0
, ~12!

whereDe5(e02e`) is the dielectric increment;t0 is recip-
rocally proportional to the peak frequency of the dielect
loss. For most relaxation processes this single relaxation t
model should be modified to secure agreement betw
theory and experiment. A straightforward modification is
introduce a relaxation-time distribution. LetG(t)dt be the
contribution to the permittivity of the group of dipoles ha
ing individual relaxation time in a rangedt neart; the con-
tribution of the various groups may be linearly superpose
the interaction between dipoles can be neglected. The t
complex permittivity is then expressed as

e* ~v!5e`1DeE dt G~t!

11 ivt
. ~13!

HereG(t) is the relaxation-time distribution function. Intro
ducing reduced relaxation time~RRT! t5t/t0 , G(t) is re-
placed byr(t), and Eq.~13! changes into

e* ~v!5e`1DeE dt r~ t !

11 ivtt0
. ~14!
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The above two equations are just the Laplace transfor
tions of the distribution function. Therefore, the distributio
of relaxation times will be uniquely determined through E
~14! if any analytic function that can represent the relaxat
data is known.

As is well known, three expressions for the dielectric p
mittivity allow one to describe a wide range of the expe
mental relaxation data that cannot be described by the De
formula. They are the Cole-Cole formula

e* ~v!5e`1
De

11~ ivt0!m
, ~15!

the Davidson-Cole formula

e* ~v!5e`1
De

~11 ivt0!n
, ~16!

and the Havriliak-Negami formula

e* ~v!5e`1
De

@11~ ivt0!m#n
, ~17!

where 0,m,1 and 0,n,1 are parameters, determinin
the characteristics of the dielectric relaxation uniquely. T
parameterm appears to represent the breadth whilen repre-
sents the skewness of the distribution of relaxation times@2#.

It has been shown that the corresponding RRT distri
tion functions for the three relaxation patterns are as follo
@1,2#, i.e., the Cole-Cole pattern

r~ t !5
t2(12m)sinmp/p

11t2m12tm cospm
, ~18!

the Davidson-Cole pattern

r~ t !5H t2(12n)~12t !2n sinnp/p, t<1

0, t.1,
~19!

and the Havriliak-Negami pattern

r~ t !5
t2(12mn) sinup/p

~11t2m12tm cospm!n/2
, ~20!

where

u5arctan
sinmp

tm1cosmp
.

These distribution functions are in fact the probabil
density, i.e.,r(t)dt is the probability of the reduced relax
ation time betweent and t1dt. In order to conduct multi-
fractal analysis on this system, the time domain@ tmin ,tmax#,
over which the relaxation times distribute, is divided in
N (N→`) equal intervals with lengthd→0. One may note
that there are some poles in the distribution functions in E
~18!–~20!. Thus, one should treat the boxes near the po
separately when computing the partition functions. For
Davidson-Cole relaxation, there are two poles att5tmin50
a-

.
n

-

ye

e

-
s

s.
s
e

and t5tmax51, respectively. We have gotten some very
teresting results in Ref.@13#. There is only one pole att
5tmin50 in the distribution functions of the other two kind
of relaxation processes, andtmax5`. Therefore, the corre-
sponding partition function can be obtained in the followi
way:

Z~q!5(
i 51

N

Pi
q5F E

0

d
r~ t !dtGq

1dq21E
d

`

r~ t !qdt. ~21!

Simple calculation gives the partition functions for th
three kinds of relaxation patterns (ZDC has been calculated in
Ref. @13# by the authors!,

ZCC~q!5g~m,m!dmq1C1dq21, ~22!

ZDC~q!5g~n,n!dnq1g~12n,n!d (12n)q1C2dq21,
~23!

ZHN~q!5g~mn,u!dmnq1C3dq21, ~24!

where

C15h~m!E
0

`

t2q(12m)~11t2m12tm cosmp!2qdt,

C25h~n!B~12nq,11q2nq!,

C35h~u!E
0

`

t2q(12mn)~11t2m12tm cosmp!2nq/2dt,

g~j,h!5@j2q2~11jq2q!21#h~h!,

h~h!5~sinhp/p!q.

Here, B(z1 ,z2) is the beta function.ZCC, ZDC, andZHN are
the partition functions for the RRT distributions of Cole
Cole, Davidson-Cole, and Havriliak-Negami relaxation p
terns, respectively.

IV. RESULTS AND DISCUSSION

One may note that there is more than one term on
right-hand side of Eqs.~22!–~24! in Sec. III. They are the
origination of the phase transitions in the multifractal the
modynamics of the RRT distributions for different relaxatio
processes. The contribution of each term to the correspo
ing partition function is determined by parametersm or n, or
m andn. The competing between each pair of terms resu
in different behaviors of the partition functions with respe
to the variation ofq. For some specificq value the two terms
are equally competing, and the critical condition occurs. W
denote the critical value byqc , which separates differen
thermodynamic states. One can easily get the equation
these critical values ofq by setting the exponents in th
corresponding two competing terms to be equal. They are
critical line for the Cole-Cole process,

qc5
1

12m
, 0,m,1, ~25!

the critical line for the Davidson-Cole process,



3296 PRE 62ALEXANDER LEYDERMAN AND SHI-XIAN QU
TABLE I. Generalized dimensions for different relaxation patterns.

Relaxation patterns Dq (q>qc) Dq (q,qc) qc

Cole-Cole qm/(q21) 1 1/(12m)
Davidson-Cole qmin$n,12n%/(q21) 1 1/max$n,12n%
Havriliak-Negami qmn/(q21) 1 1/(12mn)
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1

max$n,12n%
, 0,n,1, ~26!

and the critical surface for the Havriliak-Negami process

qc5
1

12mn
, 0,m, n,1. ~27!

As we have already shown in Sec. II, the partition fun
tion is scaling whend→0. The generalized fractal dimen
sions for the three non-Debye relaxation processes ca
easily obtained by comparing Eqs.~22!–~24! with Eq. ~3!.
The results are shown in Table I and Fig. 1. Consequen
the corresponding thermodynamic functions were obtai
through the Legendre transformations~10! and~11!. The re-
sults are listed in Table II.

All these results reveal that phase transitions will be
served at the correspondingqc’s. The generalized dimen
sions and the free energies for different relaxation patte
are continuous, but their first order derivatives are disc
tinuous whenq→qc ~see Fig. 1 and Table II!. Thus the
phase transitions are of the first order. These multifra
phase transitions are very similar to the one observed in
multifractal thermodynamics of the logistic map@14#, but
have some new features. In terms of the terminology in R
@14#, we may also address the phase transitions observe
the current work as the transformation between ‘‘hyp
bolic’’ and ‘‘nonhyperbolic’’ phases. A detailed analysis o
their properties for different relaxation patterns will be giv
in the following section.

One may have already noted that the results for the C
Cole and the Havriliak-Negami patterns in Tables I and II
nearly the same except replacingm by mn. This can be eas
ily understood because their RRT distribution functions~18!
and ~20! are simply related by a power-law relation with
positive order, i.e.,rHN(t);@rCC(t)#n. This implies that the
topological properties for both of them are the same, i
they are topologically conjugated. Thus they have the sa
measure properties. For these two relaxation patterns, the
only one pole att50, where the distribution functions go t
infinity. The hyperbolic contribution@the second terms in
Eqs. ~22! and ~24!# to the partition function arises from th
bulk of the RRT intervals away from the singular point. O
may see from Table II and Eq.~6! that the probability of the
RRT in this kind of box satisfiesPi;d. However, the non-
hyperbolic contribution@the first terms in Eqs.~22! and
~24!#, depending onm, or on m and n, arises from the sin-
gularity of the distribution functions att50. The probability
of the relaxation times in the intervals very close to this p
is scaled byPi;dj, which is much bigger than the probabi
ity for those in the intervals away from the pole. Here,j
5m corresponds to the Cole-Cole pattern, andj5mn corre-
-
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sponds to the Havriliak-Negami pattern. In the multifrac
thermodynamics@12#, big q favors the events with high
probability and smallq favors the events with low probabil
ity. Therefore, the relaxation processes with much sho
RRT, or the fast relaxation processes, dominate the m
fractal property whenq>qc . The phase diagram is shown i
Fig. 2~a!.

To this end, one may conclude that the relaxation p
cesses in these two patterns consist of the ones with
probabilities obeying both the conventional and fractal sc
ing rulers. However, the fractal relaxation processes m
the leading contribution, and therefore represent the natur
the systems. This conclusion supports the fractal ti
random-walk model in which a fractal scaling of the pro
ability density with a single pole att50 is proposed@11#,
and the self-similar relaxation model in terms of the fra
tional order calculus@4–6#, based upon which the analytica
derivations of the Cole-Cole formula were carried out. W
expect the analytical derivation of the Havriliak-Negami fo

FIG. 1. The generalized dimension spectra.~a! j5m, for the
Cole-Cole type relaxation, andj5mn, for the Havriliak-Negami
type relaxation;~b! for the Davidson-Cole type relaxation.
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TABLE II. Free energies and Lipschitz-Ho¨ld singular exponents.

J(q) a(q)
Relaxation patterns (q>qc) (q,qc) (q>qc) (q,qc)

Cole-Cole qm q21 m 1
Davidson-Cole qmin$n,12n% q21 min$n,12n% 1
Havriliak-Negami qmn q21 mn 1
n
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mula based on the fractal model.
As we have discussed in@13#, the RRT distribution in the

Davidson-Cole relaxation process has two poles att50 and
t51, respectively. The nonhyperbolic contribution~whenq
>qc) to the partition function comes from the competitio
between two kinds of characteristic relaxation processes
ones with RRT in the intervals near the pole att50 and t
51, respectively. It introduces interesting new features
the multifractal thermodynamics of the system. They
equally competitive whenn5 1

2 , and the corresponding phas
transition has no intrinsic difference from the ones obser
in the two relaxation patterns mentioned above. Ifn, 1

2 ,
however, the relaxation processes with RRT very close to
pole att50 dominate the contribution. We address this ki
of process as the fast relaxation process. Whenn. 1

2 , the
relaxation processes with RRT very close to the pole at
51 dominate the contribution. We refer to them as the slo
relaxation processes. One can immediately get a conclu
that the nonhyperbolic phase will bifurcate, atn5 1

2 , into two
subphases, the fast-relaxation phase and the slow-relax
phase, respectively. Therefore, the critical line between
hyperbolic and the nonhyperbolic phases decomposes
two critical lines, i.e., the one between the hyperbolic and
fast-relaxation phases, and the other one between the hy
bolic and the slow-relaxation phases. It is worthwhile to e
phasize that the first order derivatives of the multifrac
thermodynamic functions are discontinuous atn5 1

2 , which
also shows a phase transition~a new feature!. As shown in
Fig. 2~b!, there is a triple point at (n5 1

2 ,q52) in the phase
diagram, at which the relaxation processes with the RRT
the three kinds of intervals mentioned previously are equ
competing.

Clearly, the two poles of the distribution function repr
sent the intrinsic features of the Davidson-Cole relaxat
process. Because the probability of the relaxation proce
with RRTs near the poles is scaled byPi;dmin$n,12n%, which
is much bigger than that away from the poles, they make
leading contribution to the multifractal thermodynamic fun
tions, and thus to the overall relaxation mechanism. It is
additional pole att51 that makes the multifractal behavio
in this relaxation pattern much different from that in th
other two patterns. All the results evoke the analytical de
vation of this empirical dielectric relaxation formula by em
ploying the fractal random-walk model advanced by Go
and Yonezawa@11#, but introducing another singular poin
at t51, into the probability density of the random-wa
events. This will be discussed elsewhere.

One could also conclude that the Davidson-Cole form
may describe the relaxation systems including two kinds
typical relaxation processes with relatively shorter a
longer relaxation times, respectively, such as the dielec
relaxation in the plastic crystal@15# during the glass transi
he
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tion and that in some organic glasses during the molt
crystal transitions@16#. In our recent work on the relaxatio
dynamic study of the organic glasses 2-cyclo-octylamino
nitropyridine ~COANP!, (S)-2-N-a-(methylbenzylamino)-
5-nitropyridine, 2-(N-prolinol)-5-nitropyridine, and N-
(4-nitrophenyl)-(L)-prolinol ~NPP!, it was found that their
dielectric relaxation spectra could be perfectly described
the Davidson-Cole formula@16#. Furthermore, the tempora
dependence measurement, of the dielectric spectra
COANP glass in the isothermal condition near the molte
crystal transition point, shows that the peak of the dielec
loss spectrum decreases with time but the position rem
unchanged. The skewness parametern decreases from 0.71

FIG. 2. The phase diagrams.~a! The curve represents the critica
line for the Cole-Cole pattern whenj5m, but represents the critica
surface for the Havriliak-Negami pattern whenj5mn. ~b! The
critical lines for the Davidson-Cole pattern.
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to 0.38 in 50 min. The same phenomenon was also obse
in NPP glass, andn decreases from 0.55 to 0.25 in 8 h@17#.
These results imply that the crystallization does not ind
the slow-down of the relaxation process. During the crys
lization processes, the COANP and NPP glasses can b
garded as the two-phase systems consisting of the glas
and crystal-like parts, which coincides with the two-orde
parameter model for the supercooled liquids@18#. The glass-
like parts relax with longer characteristic relaxation tim
while their crystal-like counterparts relax with the shor
ones. The dielectric loss could be described by a weigh
superposition of the two limiting spectra@15#, i.e., e9(v,t)
5@12N(t)#eglass9 (v)1N(t)ecrystal9 (v), where N(t) is the
crystallinity. At the very beginning of the crystallization, th
glasslike parts dominate the composition and make the p
cipal contribution to the overall dielectric loss. So the para
etern is greater than 0.5. As the process goes on, the we
of the crystal-like parts becomes higher than that of th
glasslike counterparts, and hencen decreases. The overa
relaxation time exhibits no obvious change because the c
acteristic times of both parts do not change significan
This agrees with the discussions in the preceding paragr
keeping the characteristic relaxation timet0 unchanged, but
varying the parametern may only result in the variation o
the relaxation-time distribution. Therefore, one may und
stand the fact that the relaxation dynamics of these org
glasses obeys the Davidson-Cole formula. Finally, we w
to point out that the changing of the parametern from above
to below 1

2 implies that there is a multifractal phase transiti
associated with the molten-crystal transition process.

V. SUMMARY

We have set up the multifractal measures and analytic
got the multifractal thermodynamic functions of the RR
distributions for Cole-Cole, Havriliak-Negami, an
Davidson-Cole relaxation processes, which provides so
,
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deep understanding of the distribution properties of the
laxation processes. The phase transitions observed in t
systems reveal the competing of the relaxation proces
with the relaxation times in different time scales. The rela
ation processes with the relaxation time very near the po
of distribution functions make the leading contribution to t
overall relaxation mechanism, which represents the intrin
features of the relaxation systems. The probability of
RRT in this time scale is fractal scaling. The correspond
exponent is the Lipschitz-Ho¨ld singular exponent which is
or can be, determined by the so-called shape parameter i
empirical dielectric relaxation formulas. This conclusio
supports the analytic proofs of these empirical dielectric f
mulas in terms of the fractal concept. To the authors’ kno
edge, the multifractal analysis on these relaxation proce
and the multifractal phase transitions observed in these
tems are reported in this paper for the first time. These tr
sitions, different from the conventional multifractal pha
transition, are dominated not only byq but also by the shape
parameters of the relaxation curves.

The multifractal analysis method employed in this wo
can be applied to any other relaxation pattern if one m
somehow get the relaxation-time distribution function an
lytically or numerically. Different multifractal phase trans
tions will be expected when there are different kinds of s
gularities in the distribution functions occurring somewhe
in the time domain or even in the space domain. We beli
that the multifractal analysis of the dielectric relaxation
other relaxation phenomena would be another active are
the application of fractal theory, and meanwhile, as we h
already shown in this paper, will provide some deep und
standing of the relaxation mechanism.
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