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Multifractal phase transitions in the non-Debye relaxation processes
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The multifractal measures of the relaxation-time distributions are analytically obtained for some typical
non-Debye dielectric relaxation processes. The characteristics of the corresponding multifractal thermodynam-
ics are discussed. It is shown that the probability of the relaxation times near the poles of their distribution
function is fractal scaling. The corresponding LipschitzZidHgingular exponent is, or can be, determined by the
so-called shape parameters in the empirical dielectric relaxation formulas. The relationship to some analytical
proofs of the empirical dielectric formulas based upon the fractal models is also analyzed. Some generalized
multifractal phase transitions with interesting features are reported in this paper. The recent experiment results
on the molten-crystal transition in organic glass systems are also discussed to support our conclusions.

PACS numbgs): 05.40-a, 77.22.Gm, 47.53:n, 64.70.Pf

[. INTRODUCTION believe that the equations describing relaxation of the system
on the macrolevel will coincide with the equations describ-
Relaxation processes, deviating from exponential behawng the relaxation of individual electric dipoles on the mi-
ior in time domain or from the classical Debye form in fre- crolevel. Then a model with the relaxation times distributing
guency domain, occur in many physical systems such as dbver a fractal set is built. Through the analytic derivation of
electrics, supercooled liquids, viscoelastic solids, liquidthe fractional-order differential equation for the relaxation
crystals, polymer melts and solutions, and porous medigunction, they obtained the Davidson-Cole formula for the
They are usually described by sophisticated mathematicalomplex susceptibility. They related the exponent in the for-
functions, for instance the Cole-Cole formula, the Davidsonmula to the fractal dimension of the time structure over
Cole formula, the Havriliak-Negami function, and power which the relaxation time distributes. Their approach pro-
laws[1-3]. The deep understanding of these dielectric provides a reasonable interpretation of the Davidson-Cole for-
cesses and the first principle proof of these empirical relaxmula. In Ref[11], Gomi and Yonezawa defined a relaxation
ation functions are the important topics. Recently, the fractafunction by the characteristic function of the fractal random
interpretation of dielectric relaxation phenomena has becomealk. The Fourier-Laplace transformation of this function
a very active research fie[d—10]. Nigmatullin and Ryabov vyields the Cole-Cole formula, in which the breadth exponent
[4—6] set up some general relaxation equations based on the related to the exponent in the scaling of the probability
fractional order calculus in time structure, and carried out thedistribution of fractal random jump events.
analytical derivations of the Cole-Cole and the Davidson- For the non-Debye relaxation, one often expects the dis-
Cole dielectric relaxation formulas. Feldmaal. [7] ad-  tribution of relaxation time$1]. Analysis of the distribution
vanced a model to describe the cooperative relaxation in miproperties will also shed light on the understanding of the
croemulsions near the percolation threshold, in which thenature of relaxation processes. The multifragidl] analysis
excitation transferring via relaxation channels in a fractalof the distribution property of physics quantities in con-
cluster of droplets is supposed. Based upon the well-knowdensed matters has recently attracted much interest among
Zener model, Metzler and his collaborat$8] developed a researchers. The discovery of phase transitions in multifrac-
fractional-order differential equation with respect to time for tal analysis is another new development in fractal theory and
both strain and stress relaxations, and also obtained the geits applications, and there are still many open questions. In
eral relaxation-time distribution. A differential equation for general, a phase transition results from the nonanalytic prop-
non-Debye relaxation and diffusion was built in fractal erty of the characteristic thermodynamic functions, and may
space-time by Kobelev and his co-work¢®3. The anoma- be accompanied by abrupt changes in the properties of the
lous relaxations were studied by Gotemand Araujo[10]  system. The investigation of phase transitions will provide a
through the random-walk model in disordered structures conway to get a complete knowledge of the system. In analyzing
sisting of regular and fractal lattices. the measure property of the relaxation-time distribution in
In Ref. [4], a self-similar relaxation process is assumedDavidson-Cole relaxation, we got an analytical description
for the Davidson-Cole dielectric relaxation process. The auef the corresponding multifractal thermodynamics and found
thors consider the system in which the relaxation on the maca generalized multifractal phase transit{d3]. It is the first
roscopic level may be defined as the relaxation of the enorevidence of multifractal phase transition in the relaxation
mous elementary components on the microlevel. Theyrocesses. In this paper, we will extend the multifractal
analysis to the Cole-Cole and the Havriliak-Negami relax-
ation patterns. The phase transitions in these two processes

*Email address: alex@feynman.upr.clu.edu and the relationship among the phase transitions in different
"Permanent address: Department of Basic Courses, Xi'an Petraelaxation patterns will be discussed. Our recent experiment
leum Institute, Xi'an 710065, China. results on the molten-crystal transition in organic glass

1063-651X/2000/6@3)/32936)/$15.00 PRE 62 3293 ©2000 The American Physical Society



3294 ALEXANDER LEYDERMAN AND SHI-XIAN QU PRE 62

systems are also discussed to support the conclusions wheref(«) is the Hausdorff dimension of these subsets. One

this work. can easily get the relationship betwegiiq) andf(«). Ac-

cording to Eqs(6) and (7), the partition function could be
Il. MULTIFRACTAL ANSATZ rewritten as
The multifractal analysis is based on the standard box- . q_ a—f(a)

counting procedure, dividing the system ity boxes of 2(5)_2 Pi(9) _f da p(a) & : (8)

linear sizeé and determining the probability of some physi-

cal property in thdath box, The saddle-point approximation to the integrand in EB).
yields

Pi(8)= pdQ, (1) Z(8)~ s -, 9

box i
Combining the definition$4) and (5), one gets
as a suitable measure, whepeis the probability density
(distribution function. The g-order probability moment, i.e., df(a)

the partition function, is defined by E(@)=qa(a)~f(a), da (10

This equation is just the Legendre transformation, witgise

Z(Q)=Ei Pi(6)%. (2)  analogous to reciprocal temperature in ordinary thermody-
namics. One may immediately obtain the inverse Legendre
If it is proportional to some power of the box size &s-0, transformations,
©g- = d=(a)
fla)=a(q)q—2(q), o= q

lim Z(q) ~ 8¢9~ 1)Pq 3
6—0

(11)

In the multifractal thermodynamics, one also addre&as)
as “free energy” andf(«) as “entropy.” Now, two sets of
characteristic function&€(q) and f(«) have been set up to
describe the multifractal behavior.

then the multifractal behavior or a multifractal set may be
derived.D is the so-called generalized dimension, which is
defined as follows:

InZ(q) IIl. RELAXATION-TIME DISTRIBUTIONS AND THE
Dy= “m(%s' (4) MULTIFRACTAL PARTITION FUNCTIONS

—old— )N . : : : -
o0 In Debye’s dielectric relaxation theory, the dipoles in di-
. . . electric media relax with a single relaxation timg and the
Th‘? behavior 01_‘ th|§ multifractal set can b.e completely de'frequency dependence of the complex permittivity reads
scribed by an infinite number of generalized dimensions.
Each generalized dimension has its own meaning, for ex- Ae
ample,Dy is the dimension of the support of the measure € (w)=¢€,
onto which the elements of the multifractal set distribiie,

is the information dimension which determines the scaling O(NhereAez (eo—€..) is the dielectric increments, is recip-

the mfolrmatlon with respect tp box size, .and the' correlauoqoca"y proportional to the peak frequency of the dielectric
dimensionD, reflects the scaling of density-density correla-|oss. For most relaxation processes this single relaxation time
tion function.D is often related to the so-called mass expo-model should be modified to secure agreement between
nent[12] (in this paper, the mass exponent is denote@Dy  theory and experiment. A straightforward modification is to
introduce a relaxation-time distribution. L&(7)dr be the
E(q)=(q—1)Dg. (5 contribution to the permittivity of the group of dipoles hav-
ing individual relaxation time in a rang#r nearr; the con-
While the discussion of the generalized dimensidpis  tribution of the various groups may be linearly superposed if
quite illustrative, the abstract analysis of multifractals is of-the interaction between dipoles can be neglected. The total
ten concerned with the singularity strength of the fractal,complex permittivity is then expressed as
given by the Lipschitz-Hidl exponentr and the correspond-

* l+iwr’ (12

ing singularity spectruni(«). In theith box, the singularity (o) e et A drG(r) 13
strengthe is defined by e (w)=e.+Ae | 377 (13
Pi(8)~ 5. (6) HereG(r) is the relaxation-time distribution function. Intro-

ducing reduced relaxation tim@®RT) t=7/7y, G(7) is re-

The number of subsets(«) in which this strength is ob- Placed byp(t), and Eq.(13) changes into
served satisfies the following rule: dt p(t)
p

l+iwtry’ (149

N(@)~ 5@, @ 6*(w)=ew+AeJ'
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The above two equations are just the Laplace transformaandt=t,,,= 1, respectively. We have gotten some very in-
tions of the distribution function. Therefore, the distribution teresting results in Ref.13]. There is only one pole at

of relaxation times will be uniquely determined through Eq. =t _; =0 in the distribution functions of the other two kinds
(14) if any analytic function that can represent the relaxationof relaxation processes, arg,,=. Therefore, the corre-

data is known. _ _ _ sponding partition function can be obtained in the following
As is well known, three expressions for the dielectric per-way:

mittivity allow one to describe a wide range of the experi-

mental relaxation data that cannot be described by the Debye N s q (7
formula. They are the Cole-Cole formula Z(Q)Izl Pi= fo p(t)dt| + 5 L p()fdt. (21)
(w)=€ Ae (15) Simple calculation gives the partition functions for the
* 1+ (i (‘)TO)'M, three kinds of relaxation patternZ{- has been calculated in

Ref.[13] by the authorg
the Davidson-Cole formula

ZCC(q):g(MiM) 5Mq+cléq_li (22)
€ (0)= €t ——, (16) Zoc(@)=9(v,v) 8"+ g(1—v,») 6119+ C, 8% 1,
(1+iwTgy)” (23
and the Havriliak-Negami formula Zin(@) =g( v, ) 5#79+Cz8971, (24)

Ae where

* —
e o] 4 .
clzh(ﬂ)f 9= (1 + 24+ 2t# cospr) ~Udt,
where O<u<1 and O<v<1 are parameters, determining 0
the characteristics of the dielectric relaxation uniquely. The
parameter appears to represent the breadth whileepre- C,=h(v)B(1-vq,1+q-vq),
sents the skewness of the distribution of relaxation tif2és
It has been shown that the corresponding RRT distribu- _ X (1= v 2 /2
tion functions for the three relaxation patterns are as follows Ca=h(0) fo 17T (L2 2t cosu) T,
[1,2], i.e., the Cole-Cole pattern
g(&,m=[¢ 9=(1+&q—q) *h(7),
t~ " Msinpa/

p(t)= 1+ 1%+ 24 cosmp” (18 h(7)=(sinpm/ )"
; ) Here, B(z,,2,) is the beta functionZ¢¢, Zpc, andZyy are
the Davidson-Cole pattern the partition functions for the RRT distributions of Cole-
t~ (1 —t) Vsinval/m, t<1 Cole, Davidson-Cole, and Havriliak-Negami relaxation pat-
p(t)= (19) terns, respectively.
0, t>1,
IV. RESULTS AND DISCUSSION
and the Havriliak-Negami pattern .
One may note that there is more than one term on the
t= =19 sin @/ 7 right-hand side of Eqs(22)—(24) in Sec. Ill. They are the
p(t)= , (20 origination of the phase transitions in the multifractal ther-
(1+1t2#+2t* cosmu)"? modynamics of the RRT distributions for different relaxation
h processes. The contribution of each term to the correspond-
where ing partition function is determined by parametgrer v, or
sinwamr p andv. The competing between each pair of terms results
9= arctan—=r" in different behaviors of the partition functions with respect
t¥+cosur to the variation ofy. For some specifig value the two terms

are equally competing, and the critical condition occurs. We

These distribution functions are in fact the probability denote the critical value by, which separates different
density, i.e.,p(t)dt is the probability of the reduced relax- thermodynamic states. One can easily get the equations of
ation time between andt+dt. In order to conduct multi- these critical values of] by setting the exponents in the
fractal analysis on this system, the time domigifi,.tmad,  corresponding two competing terms to be equal. They are the
over which the relaxation times distribute, is divided into critical line for the Cole-Cole process,
N (N—<) equal intervals with lengtl#— 0. One may note
that there are some poles in the distribution functions in Egs. 1
(18)—(20). Thus, one should treat the boxes near the poles qczm' O<p<1, (29)
separately when computing the partition functions. For the
Davidson-Cole relaxation, there are two polegat,,;,=0 the critical line for the Davidson-Cole process,
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TABLE I. Generalized dimensions for different relaxation patterns.

Relaxation patterns Dq (0=0qc) Dq (a<qy) de
Cole-Cole qu/(g—1) 1 /(11— )
Davidson-Cole gmin{»,1-v}/(q—1) 1 1/maxy,1-v}
Havriliak-Negami quv/(g—1) 1 1/(1-pv)
1 sponds to the Havriliak-Negami pattern. In the multifractal
0<wv<1, (26)  thermodynamicg12], big q favors the events with high

Qe maxv,1— v}’
and the critical surface for the Havriliak-Negami process,

_ 1
1y’

Jc o<u, v<l1. (27

probability and smaltj favors the events with low probabil-
ity. Therefore, the relaxation processes with much shorter
RRT, or the fast relaxation processes, dominate the multi-
fractal property whem=q.. The phase diagram is shown in
Fig. 2(a).

To this end, one may conclude that the relaxation pro-

cesses in these two patterns consist of the ones with the

As we have already shown in Sec. Il, the partition func-probabilities obeying both the conventional and fractal scal-
tion is scaling whens—0. The generalized fractal dimen- ing rulers. However, the fractal relaxation processes make
sions for the three non-Debye relaxation processes can Rfe eading contribution, and therefore represent the nature of
easily obtained by comparing EqR2)—(24) with Eq. (3).  the systems. This conclusion supports the fractal time
The results are shown in Table | and Fig. 1. Consequentlyrandom-walk model in which a fractal scaling of the prob-
the corresponding thermodynamic functions were obtaine@bi”ty density with a single pole at=0 is proposed11],
through the Legendre transformatiofif) and(11). The re-  and the self-similar relaxation model in terms of the frac-
sults are listed in Table II. tional order calculu$4—6], based upon which the analytical

All these results reveal that phase transitions will be obyerivations of the Cole-Cole formula were carried out. We

served at the correspondirg’s. The generalized dimen- expect the analytical derivation of the Havriliak-Negami for-
sions and the free energies for different relaxation patterns

are continuous, but their first order derivatives are discon-
tinuous wheng—q, (see Fig. 1 and Table )l Thus the
phase transitions are of the first order. These multifractal
phase transitions are very similar to the one observed in the
multifractal thermodynamics of the logistic maf4], but
have some new features. In terms of the terminology in Ref.
[14], we may also address the phase transitions observed in
the current work as the transformation between “hyper-
bolic” and “nonhyperbolic” phases. A detailed analysis of
their properties for different relaxation patterns will be given
in the following section.

One may have already noted that the results for the Cole-
Cole and the Havriliak-Negami patterns in Tables | and 1l are
nearly the same except replacipgby wv. This can be eas-
ily understood because their RRT distribution functioh8)
and (20) are simply related by a power-law relation with a
positive order, i.e.pyn(t) ~[pcc(t)]”. This implies that the
topological properties for both of them are the same, i.e.,
they are topologically conjugated. Thus they have the same
measure properties. For these two relaxation patterns, there is
only one pole at=0, where the distribution functions go to
infinity. The hyperbolic contributiorthe second terms in
Egs.(22) and(24)] to the partition function arises from the
bulk of the RRT intervals away from the singular point. One
may see from Table Il and E¢6) that the probability of the
RRT in this kind of box satisfie®;~ 6. However, the non-
hyperbolic contribution[the first terms in Eqs(22) and
(24)], depending ornu, or on x and v, arises from the sin-
gularity of the distribution functions dt=0. The probability
of the relaxation times in the intervals very close to this pole
is scaled byP;~ &, which is much bigger than the probabil-  FiG. 1. The generalized dimension specti@. é= u, for the
ity for those in the intervals away from the pole. Hefe, Cole-Cole type relaxation, ané= v, for the Havriliak-Negami
= u corresponds to the Cole-Cole pattern, &sduv corre-  type relaxationyb) for the Davidson-Cole type relaxation.
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TABLE Il. Free energies and Lipschitz-ftbsingular exponents.

E(a) a(a)
Relaxation patterns a=dc) (a<qc) (9=0c) (a<qc)
Cole-Cole qu g-1 o 1
Davidson-Cole gmin{»,1—v} g-1 min{v,1— v} 1
Havriliak-Negami quv g-1 Ly 1
mula based on the fractal model. tion and that in some organic glasses during the molten-

As we have discussed [13], the RRT distribution in the crystal transitiong16]. In our recent work on the relaxation
Davidson-Cole relaxation process has two poles=d and  dynamic study of the organic glasses 2-cyclo-octylamino-5-
t=1, respectively. The nonhyperbolic contributimhenq nitropyridine (COANP), (S)-2-N-a-(methylbenzylamino)-
=q) to the partition function comes from the competition 5-nitropyridine, 2-(-prolinol)-5-nitropyridine, and N-
between two kinds of characteristic relaxation processes, th@,-nitrophenyl)-(_)-prolinol (NPP), it was found that their
ones with RRT in the intervals near the poletat0 andt gjelectric relaxation spectra could be perfectly described by
=1, respectively. It introduces interesting new features tqne pavidson-Cole formul&l6]. Furthermore, the temporal
the multifractal thermodynamics of the system. They ar€jependence measurement, of the dielectric spectra of
equally competitive whem= 3, and the corresponding phase coanp glass in the isothermal condition near the molten-

transition has no intrinsic difference from the ones Observe%rystal transition point, shows that the peak of the dielectric

. . . l
L?O\}\?e?/;\r,vct)her:erlgl);\i[;?ir:)nps:;[)ecrensssen']sevCittlr?rl]QegTG:/bec;;eéro{ie t o thleoss spectrum decreases with time but the position remains
pole att=0 dominate the contribution. We address this kmdunchanged. The skewness parametetecreases from 0.71

of process as the fast relaxation process. Whern;, the

relaxation processes with RRT very close to the poleé at @)

=1 dominate the contribution. We refer to them as the slow- 1.0 F
relaxation processes. One can immediately get a conclusion
that the nonhyperbolic phase will bifurcate 1at 3, into two 08t
subphases, the fast-relaxation phase and the slow-relaxation '
phase, respectively. Therefore, the critical line between the 2
hyperbolic and the nonhyperbolic phases decomposes into 06T s
two critical lines, i.e., the one between the hyperbolic and the 2 .
fast-relaxation phases, and the other one between the hyper- ~ 04r  § Non-hyperbolic phase
bolic and the slow-relaxation phases. It is worthwhile to em- r z
phasize that the first order derivatives of the multifractal 0.2+
thermodynamic functions are discontinuousvat 3, which L
also shows a phase transiti¢a new featurg As shown in 00l
Fig. 2(b), there is a triple point aty=3,q=2) in the phase L L L ! !
diagram, at which the relaxation processes with the RRT in 0 5 10 15 20
the three kinds of intervals mentioned previously are equally q
competing.
Clearly, the two poles of the distribution function repre- 1ok (b)
sent the intrinsic features of the Davidson-Cole relaxation '
process. Because the probability of the relaxation processes _
with RRTs near the poles is scaled By~ s™"*1~*} which 08 Slow-relaxation-phase
is much bigger than that away from the poles, they make the
leading contribution to the multifractal thermodynamic func- 0.6 [
tions, and thus to the overall relaxation mechanism. It is the L Hyperbolic phase
additional pole at=1 that makes the multifractal behavior Z 04l
in this relaxation pattern much different from that in the
other two patterns. All the results evoke the analytical deri- 02k Fast-relaxation-phase
vation of this empirical dielectric relaxation formula by em- '
ploying the fractal random-walk model advanced by Gomi
and Yonezawd11], but introducing another singular point, 00F | | |

at t=1, into the probability density of the random-walk
events. This will be discussed elsewhere.

One could also conclude that the Davidson-Cole formula
may describe the relaxation systems including two kinds of FIG. 2. The phase diagran'(a) The curve represents the critical
typical relaxation processes with relatively shorter andine for the Cole-Cole pattern when= u, but represents the critical
longer relaxation times, respectively, such as the dielectrisurface for the Havriliak-Negami pattern whem uv. (b) The
relaxation in the plastic cryst4ll5] during the glass transi- critical lines for the Davidson-Cole pattern.

=N

2 3
q
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to 0.38 in 50 min. The same phenomenon was also observetkep understanding of the distribution properties of the re-
in NPP glass, andt decreases from 0.55 to 0.25 in §17].  laxation processes. The phase transitions observed in these
These results imply that the crystallization does not inducsystems reveal the competing of the relaxation processes
the slow-down of the relaxation process. During the crystalWwith the relaxation times in different time scales. The relax-
lization processes, the COANP and NPP glasses can be ration processes with the relaxation time very near the poles
and crystal-like parts, which coincides with the two-order-0Verall relaxation mechanism, which represents the intrinsic
parameter model for the supercooled liquidi§]. The glass- features of the relaxation systems. The probability of the
like parts relax with longer characteristic relaxation timesRRT IN t?[s ttlhme Ecaleh!ts fﬁau;:tal sc?llng. The C?rreﬁpﬁn_dmg
while their crystal-like counterparts relax with the shorter EXPONENLIS the LIpSChitz-Ho Singular exponent which 1s,
ones. The dielectric loss could be described by a Weighte8r can be, d_eterm|_ned by th? so-called shape parameter in the
su e.r osition of the two limiting Spectfds), i.e., ¢"(w.t) empirical dielectric relaxation formulas. This conclusion
=[p1—pN(t)]e” (o) *N(t)€! %w)p Wheré N(i')siswéhe suppor.ts the analytic proofs of these empirical dielectric for-
glas crystah ™ mulas in terms of the fractal concept. To the authors’ knowl-
edge, the multifractal analysis on these relaxation processes
M3nd the multifractal phase transitions observed in these sys-

cipal contribution to the overall dielectric loss. So the paramM+ams are reported in this paper for the first time. These tran-

eterv is greater than 0.5. As the process goes on, the weighliiions  different from the conventional multifractal phase

of the_ crystal-like parts becomes higher than that of the'rtransition, are dominated not only loybut also by the shape
glasslike counterparts, and hengedecreases. The overall ?arameters of the relaxation curves.

relaxation time exhibits no obvious change because the char- 1o multifractal analysis method employed in this work
acteristic times of both parts do not change significantly..,, pe applied to any other relaxation pattern if one may
This agrees with the discussions in the preceding paragrapBomehow get the relaxation-time distribution function ana-
keeping the characteristic relaxation timgunchanged, but | 4icajy or numerically. Different multifractal phase transi-
varying the parameter may only result in the variation of i5ns will be expected when there are different kinds of sin-
the relaxation-time distribution. Therefore, one may undery arities in the distribution functions occurring somewhere
stand the fact that the relaxation dynamics of these organig, he time domain or even in the space domain. We believe
glasses obeys the Davidson-Cole formula. Finally, we wanfna; the multifractal analysis of the dielectric relaxation or
to point out that the changing of the paramatdrom above  giher relaxation phenomena would be another active area in
to belows implies that there is a multifractal phase transition o application of fractal theory, and meanwhile, as we have
associated with the molten-crystal transition process. already shown in this paper, will provide some deep under-
standing of the relaxation mechanism.
V. SUMMARY
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